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Are Students With High Ability in Math More
Motivated in Math and Science Than Other Students?

Lori Andersen and Tracy L. Cross

Expectancy-value motivation profiles were identified in a sample of US ninth-grade students
in 2009 (n = 19,259) using latent profile analysis. Of four distinct profiles, two were high,
one typical, and one low in math and in science. In each area, the two high profiles were
distinguished by (1) high self-efficacy with lower utility value and (2) high utility value with
lower self-efficacy. High-ability was identified by a math score at least one standard deviation
above the mean within the race/ethnicity group. Forty-one percent of high-ability students had
high math motivation, while only 27% had high science motivation. Evidence of disidentifica-
tion was observed. Some high-ability students had low motivation in math (15%) and science
(28%). Implications for talent development and gifted education are discussed.

Keywords: disidentification, expectancy-value model, giftedness, latent profile analysis, math,
motivation, science, secondary data analysis

High-school students who have high ability or demonstrate
superior performance in math and science form a talent pool
from which the future scientists, mathematicians, and engi-
neers of our nation should come. However, of the large
number of individuals who form this pool of talent, relatively
few are motivated to develop their abilities in science, tech-
nology, engineering, and mathematics (STEM) disciplines
(National Science Board, 2010). If the motivation of high-
ability students was better understood, interventions could
target the specific aspects of motivation that promote talent
development. In this study, the domain-specific motivations
of high-ability students were explored.

The expectancy-value (EV) model of achievement-related
choices (Eccles et al., 1983) has been used extensively
in education research but not as much with high-ability
populations. This article begins with a description of the
expectancy-value model of achievement-related choices, fol-
lowed by an examination of each of the key constructs in the
model. The importance of motivation to giftedness and issues
particular to high-ability students are discussed.
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EXPECTANCY-VALUE

In the EV model, individuals choose among options they
perceive to be available, and this perception is affected by
cultural stereotypes and parental, familial, or peer influences.
The immediate considerations that motivate decisions about
achievement tasks include (a) the expectations for success;
(b) how well the choice aligns with goals, with one’s identity,
and with basic psychological needs; and (c) the individual’s
role schema based on gender, race, or ethnicity (Wigfield
& Eccles, 2000). The first of these considerations is called
expectancy and the remaining two collectively comprise sub-
jective task value. Choice, persistence, and performance are
explained by an individual’s expectation of success and
the subjective task value held for the activity. Decades of
research have shown that expectancies and values are good
predictors of future course taking and career choice (Eccles,
1985; Eccles, Adler, & Meece, 1984; Simpkins & Davis-
Kean, 2005; Simpkins, Davis-Kean, & Eccles, 2006; Watt,
Eccles, & Durik, 2006).

Expectancy

Expectancy is the confidence in one’s ability to successfully
perform a task (Wigfield & Eccles, 2000). Expectancy is very
similar to self-efficacy. Bandura (1994) defined self-efficacy
as “people’s beliefs about their capabilities to produce des-
ignated levels of performance” (p. 71). According to the EV
model (Eccles et al., 1983), individuals who have higher
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expectancies for success in mathematics or science will
be more likely to study STEM disciplines. The EV model
explains that prior achievement predicts expectancy, but
expectancy is also influenced by sociocultural factors such as
the stereotypes people hold for activities and of the abilities
of members of certain groups, as well as individual differ-
ences in affective reactions to previous experiences. In other
words, expectancy is positively related to ability, but even
high-ability students who internalize stereotypes about abil-
ities or who adopt familial or cultural views about who can
be successful at certain activities are likely to have reduced
expectancies in the STEM domains.

Subjective Task Value

Subjective task value (STV) is the net value ascribed to a task
by an individual (Wigfield, Tonks, & Klauda, 2009). Value
is affected by how interesting an activity was, how much it
was liked, and the nature of feedback as to the importance
or usefulness of a task. In this way, cultural expectations and
peer expectations influence the values of activities. Cultural
norms or stereotypes and how much these have been inter-
nalized affect the perceived personal cost of an activity.
In general, STV is a better predictor of choice than ability or
expectancy. Each of the four constructs that comprise STV
will be described next.

Interest–Enjoyment Value

This value is the degree of interest in the activity, which
is often operationalized as how much the task is liked or
enjoyed (Wigfield & Eccles, 2000). Those who like or enjoy
math or science are more motivated to take courses and pur-
sue STEM careers (Jacobs, Finken, Griffin, & Wright, 1998;
Lent, Lopez, Lopez, & Sheu, 2008; Lent, Paixão, Silva, &
Leitão, 2010; Miller, Lietz, & Kotte, 2002; Watt et al., 2006).

Attainment Value

This value describes how much the task confirms salient
aspects of one’s identity (Wigfield et al., 2009). Thus, STEM
course taking will be influenced by identification with math
or science; the greater the identification, the more likely
those options will be selected. Factors that affect attainment
value include individual perceptions of the domains of math
and science and internalization of gender, racial, or ethnic
role stereotypes. In other words, attainment value is closely
related to identity and how well a science or math identity
aligns with other components of the individual’s identity.

Identity Incongruence

When the perception of a math or science identity con-
flicts with what is believed appropriate for one’s gender,
race, or ethnicity, STEM-related choices will have lower

attainment value (Eccles, 2009). Research on students’ per-
ceptions over the past 50 years has revealed persistent and
pervasive stereotypes of scientists that include descriptors
such as: exceedingly clever, amoral, insensitive, obsessive,
unemotional, unsocial, unkempt, and uncaring (Barba, 1998;
Finson, 2002; Seymour & Hewitt, 1997). These stereo-
types are very similar to negative stereotypes of giftedness
(Subotnik, Olszewski-Kubilius, & Worrell, 2011). Related
to the issue of identity, “scientist” may be viewed as a stig-
matized identity because scientists are often stereotyped as
geniuses, which is also a stigmatized identity in an anti-
intellectual culture such as the United States (Coleman &
Cross, 1988; Howley, Howley, & Pendarvis, 1995). Recent
qualitative research using the framework of identity-based
motivation supports the positive relationship of attainment
value to STEM-related choices and the importance of the
compatibility of science identities for persistence (Carlone
& Johnson, 2007; Kao, 2000; Oyserman & Destin, 2010).

Utility Value

This value is the degree of alignment with future goals,
such as college or career. For example, a chemistry class may
have utility value because it is required to become a physi-
cian. Students who have related goals will place higher utility
value on math or science courses. Utility value is a significant
predictor of STEM career choice (Andersen & Ward, 2013,
2014; Maltese & Tai, 2011).

Components of STV versus Composite STV

Subjective task value predicted choice after controlling
for prior achievement (Eccles et al., 1984; Simpkins &
Davis-Kean, 2005; Watt et al., 2006), but these studies oper-
ationalized STV as a single score that represented interest–
enjoyment, attainment, and utility values. Few studies have
examined the effects of individual components of STV or
how these components may work in combination to motivate
performance. Most studies that have shown relationships
between STV and choice focused on the subjective task value
of math and how it predicted math course taking or career
choice. Few studies examined the STV of science. In one
such study, Simpkins and Davis-Keen (2005) found that
science expectancy (operationalized as self-concept) was a
better predictor of health and science career choice than the
value of science. In other words, most previous studies of
STV have not examined the relative importance of the three
constructs and have neglected science.

In most EV-based studies, external validity was limited
by the use of samples that lacked adequate representation
of racial or ethnic diversity. Thus, little is known about how
EV theory functions to predict choices for minority students.
In response to this concern, several studies have been con-
ducted using national data sets (e.g., Maltese & Tai, 2011;
Mau, 2003; Riegle-Crumb, Moore, & Ramos-Wada, 2011).
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However, problems exist with these secondary data analyses,
such as:

● studies that are not grounded in strong theoretical
frameworks (e.g., Maltese & Tai, 2011; Maple & Stage,
1991; Miller et al., 2002);

● constructs that are only weakly supported by individual
survey items (e.g., Maltese & Tai, 2011; Riegle-Crumb
et al., 2011; Shaw & Barbuti, 2010);

● overcapitalization on chance through the testing of
many variables and retaining only significant predictors
in models (e.g., Maltese & Tai, 2011);

● conflation of constructs, particularly self-efficacy and
self-concept (e.g., Mau, 2003; Riegle-Crumb et al.,
2011); and

● the use of poorly defined constructs, such as science
attitude (Blalock et al., 2008).

Each of these concerns was addressed in the present study.

GIFTEDNESS

Subotnik et al. (2011) emphasized the importance of moti-
vation to the talent development process. “[G]eneral ability
is necessary but not sufficient to explain optimal perfor-
mance or creative productivity. It remains a component
of talent development along with . . . motivation” (p. 14).
Thus, to successfully navigate the talent-development pro-
cess requires a nominal level of ability but also requires
motivation. Furthermore, it has been suggested that motiva-
tion should be part of the process of identifying giftedness
in adolescence (Coleman & Cross, 2005), which provides
support to the importance of the examination of expectancies
and values as a possible means of identifying potentially
gifted students.

In the present study, giftedness was operationalized
via Renzulli’s (1978) three ring conception of giftedness
(TRCG) that defines giftedness as creative productive behav-
ior arising from the interaction between above-average abil-
ity, task commitment, and creativity. In the TRCG (Renzulli,
1978), above-average ability is used rather than the more
typical 95th percentile designation because research has
shown that for IQ scores above 120 (91st percentile), other
variables become more important to creative production.
In other words, creative productivity is not predicted by
intelligence for individuals who are at least one standard
deviation above the mean in intelligence (Renzulli, 2005).
However, this notion of a threshold value above which abil-
ity is no longer correlated to creative production is not
universally accepted. Recent studies have found significant
differences in the STEM creative productivity of doctoral
degree holders who were in the top versus bottom quartile
of the upper 1% for those who took the SAT mathematics
test at age 13 (Park, Lubinski, & Benbow, 2008; Robertson,

Smeets, Lubinski, & Benbow, 2010). However, it may be that
those individuals who were more productive also had higher
subjective task value and were more motivated; motivation
variables were not measured in these studies. Furthermore,
the top 1% represents a very elite group and these find-
ings may not generalize to all potentially gifted students.
Above-average ability designates a group that is vastly larger
than the top 1% group. Therefore, more research is needed
regarding the relative effects of ability and motivation on
achievement or creative–productive giftedness, especially an
examination of students who are more typical of the gifted
population.

Although the TRCG advocates a more liberal ability
criteria of “above average,” in practice, gifted program iden-
tification criteria are generally much more stringent. The
strict adherence to a threshold global percentile rank as
identification criteria has resulted in the underrepresentation
of minority students in U.S. gifted programs (Ford, 2010).
A persistent gap exists between the achievement test scores
of White and minority (Black and Hispanic) students. This
omnipresent gap, along with the common practice of using
standardized test scores to identify giftedness, has resulted
in the underrepresentation of Black and Hispanic students in
gifted programs. However, there is no evidence to support the
attribution of intelligence differences to race (Nisbett et al.,
2012). Thus, students of all races and ethnicities should be
proportionally represented in the gifted population. A solu-
tion to this underrepresentation problem is to use different
cutoff scores on tests for various groups such that equal pro-
portions of each group are identified (Coleman & Cross,
2005; Lohman, 2005, 2006). This approach was taken in the
present study.

Task Commitment

The task commitment component of the TRCG (Renzulli,
1978) incorporated motivation into the concept of giftedness.
Renzulli defined task commitment as “a refined or focused
form of motivation” (Renzulli, 2005, p. 263) that is described
by terms such as perseverance and endurance and enhanced
by “the synergistic effects of extrinsic motivators on intrinsic
motivation” (p. 263). Another way that motivation is incor-
porated into the TRCG is through Operation Hounds Tooth.
Renzulli placed the three rings atop a hounds tooth back-
ground that represents a set of cocognitive factors, which
are personal characteristics that are related to commitment.
These factors include sensitivity to human concerns, opti-
mism, courage, romance with a topic, physical and mental
energy, vision and a sense of destiny, and a sense of power
to change things (Renzulli, 2012). According to Renzulli,
“Giftedness in the new century will have to be redefined in
ways that take these co-cognitive components into account”
(Renzulli, 2012, p. 156). This provides further support to
the idea that ways for quantifying student motivation are
needed.
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Gifted individuals are intensely interested in or passionate
about their talent areas and willing to spend large amounts
of time engaged in talent development activities. Bloom
(1985) stated this was due to their identification with the
talent domain. In STV terminology, task commitment is
represented by a combination of high interest–enjoyment
value and high attainment value. Such individuals believe
that the value of the activity outweighs the potential cost
of the activity. The development of talent requires the indi-
vidual to engage in deliberate practice, which describes
activities specifically designed to improve skills (Ericsson
et al., 1993). Unlike play, which has an intrinsic reward,
and work, which has extrinsic rewards, deliberate practice
has no reward other than skill development. Deliberate prac-
tice is undertaken, despite its high cost, because it holds
utility value for the individual who wants to develop exper-
tise. Individuals who are gifted in math and science would
be expected to have higher STV (attainment, utility, and
interest–enjoyment values) for those domains than students
who are not gifted in these domains. On the other hand,
school subjects may not be valued as much as more authentic
learning contexts, such as scientific investigations or self-
directed learning activities. For example, a recent study of
academically gifted and artistically talented students showed
that none of the academically talented students were pas-
sionate about school work in academic subjects (Fredricks,
Alfeld, & Eccles, 2010). More research needs to be done
regarding task commitment and the self-regulatory mecha-
nisms that sustain engagement such as the relative influences
of attainment, utility, and interest–enjoyment values.

The findings of Fredericks et al. (2010) raise the ques-
tion as to why none of the academically talented students
were passionate about academics. This may indicate some
level of intentional disidentification with academics by these
students. The information management model (Coleman &
Cross, 1988; Cross & Coleman, 2005) provides an explana-
tion for why gifted students may disidentify with academics.
Gifted students encounter mixed messages in different con-
texts and often must decide between achievement and social
acceptance. In the typical American high school, passion
about academics is viewed as socially unacceptable or stig-
matizing. High-ability students desire popularity and social
acceptance just as other children do. However, most gifted
children feel different from their nongifted peers, and some
of those who feel different engage in social-coping strategies
to manage their identities at school and feel less differ-
ent. Some of the most common strategies are to hide their
abilities or to disidentify. In terms of the EV model, such
students are likely to report lower levels of attainment value.
No research has been done on gifted students’ disidentifica-
tion with the STEM domains specifically.

In studies of highly gifted students, educational–
occupational interests have been shown to have incremental
predictive value above measures of ability for occupational
choice (Achter, Lubinski, Benbow, & Eftekhari-Sanjani,

1999; Robertson et al., 2010; Webb, Lubinski, & Benbow,
2002). Although these studies have been conducted with
very high-ability students, the predictive power of interest–
enjoyment value above ability or expectancy is supported
by research with other populations. However, identity-
incongruence is a barrier to decisions to persist in STEM.
A study of gifted elementary school students showed that
science attitudes including enjoyment of science, science
leisure activities, and perceptions of the normality of scien-
tists were predictive of the science course selections for girls
but not for boys (Farenga & Joyce, 1998). Thus, interest–
enjoyment value and attainment value are likely to affect
science choices for gifted students.

Gifted Students and STV

Academic intrinsic motivation is demonstrated by enjoy-
ment of learning, curiosity, persistence, and the ability to
learn challenging or difficult tasks (Gottfried, Marcoulides,
Gottfried, & Oliver, 2009). This concept is similar to the
STV construct of interest–enjoyment value. Students with
high achievement in math or science are more likely to
have high interest in those domains (Denissen, Zarrett, &
Eccles, 2007). On the other hand, Gottfried, Cook, Gottfried,
and Morris (2005) compared academic ability and intrin-
sic motivation and found that when students were grouped
by high academic ability and by high academic intrinsic
motivation, a minority of students were members of both
groups. Furthermore, Gottfried et al. (2005) found that the
high intrinsic motivation group had higher levels of achieve-
ment than the high-ability group in a study that used a small
(N = 111), nondiverse, convenience sample, which limits
the generalizability of this finding. High achievement may
or may not be coincident with high intrinsic motivation;
however, studies that include diverse populations or that
focus on domain-specific intrinsic motivation have not yet
been conducted.

Summary

Adolescents’ decisions to study math and science depend
on domain-specific STVs and expectancies (Eccles, 2011;
Maltese & Tai, 2011; Zarrett & Malanchuk, 2005). The
students with the highest abilities or prior performance
within the domains of math and science are thought to be
the best candidates for talent development in that domain.
However, domain-specific STV (attainment, utility, and
interest–enjoyment values) may be more important than abil-
ity to the development of talent. Students who are motivated
to pursue STEM talent development must value the domain.

Each gifted student encounters varying degrees of dis-
sonance between cultural norms and the norms of sci-
ence culture, conflict between gender-role expectations and
STEM career expectations, negative racial/ethnic stereo-
types, and negative gender stereotypes. All gifted students



MOTIVATION OF HIGH-ABILITY MATH STUDENTS 225

feel stigmatized to some degree due to their differentness
from other students. STEM identities are also stigmatizing
due to the negative stereotypes associated with these occu-
pations that directly oppose the characteristics and traits that
adolescents desire and thus threaten their potential for pop-
ularity and peer acceptance. These sociocultural phenomena
may affect gifted students’ decisions to pursue STEM occu-
pations if these students use coping mechanisms such as
disidentification. More empirical research is needed to study
the actual expectancy value patterns of above average abil-
ity students. A large-scale study of students’ expectancies
and value will provide some baseline data to guide fur-
ther research into why some students persist and others
disidentify.

PERSON-CENTERED APPROACH

The extant literature suggests that occupational choice
is a result of interactions that occur within individuals
among expectancies and values. This suggests that a person-
centered approach should be taken in which the level of
a variable for that person is compared to the levels of the
other variables for that person. In the present study, such
an approach was used to find profiles of variable configu-
rations present in individuals. Person-centered approaches
represent a holistic–interactionist perspective to model build-
ing that considers the person and his or her context as
a system and the unit of study (Bergman, Magnusson, &
El-Khouri, 2003). Individuals are active agents who take
intentional actions as they interact with the environment in
a dynamic, complex, and adaptive process. In the present
study, a person-centered approach was used because (a)
EV variables function in constellations instead of singly,
(b) relationships between variables within the EV model
are different for each individual, and (c) methodological
constraints of the general linear model are removed.

Focus on Constellations of Variables

Individuals make choices based on combinations of
expectancies and values. Thus, considerations of single vari-
ables in isolation, examined out of context from other rel-
evant variables that are operating simultaneously, are not
psychologically significant. The assumption that relative
position in the distribution of a variable has equivalent mean-
ing for each individual does not hold in the EV model.
Previous research has shown that some groups tend to over-
or underestimate in their self-perceptions of ability and that
these expectancies have different relationships with choice,
persistence, and performance. Thus, it is expected that the
EV model will have differential functioning across and
within gender, ethnic, and socioeconomic groups. In the
present study, classes of people are identified by the patterns
of variables that exist within the population.

Differential Functioning of Variables

A variable-centered analysis assumes that the variables
within the model operate identically for all individuals in the
group. In such analyses, relationships between group means
on the independent variables are used to make inferences
about individuals. In such an approach, an observed statis-
tical relationship may appear to be small because it only
applies to a small group or class of individuals within the
sample. This is a concern for STEM motivation research
because of the relatively small percentages of students who
chose STEM careers. Furthermore, differences in how indi-
vidual variables function within and between groups means
that previous models may have not detected effects that
were important for subgroups of individuals within the sam-
ple. The use of a person-centered approach permits the
identification of such classes within the larger sample.

Constraints of the General Linear Model

In EV research, the collinearity of the STV constructs
has been noted (Wigfield & Eccles, 2000). Researchers have
handled this concern by using a composite variable that
represented the three STV constructs of attainment, utility,
and interest–enjoyment values. However, this combination
may have masked differences in the relative contributions
to outcomes or how the constructs worked together. In a
person-centered approach, patterns of expectancies and val-
ues are used to identify classes within the population. Thus,
the function of each of the STV constructs within classes
of individuals can be examined. Such an approach permits
the use of collinear variables and facilitates study of the
components of STV.

The present study identifies expectancy value profiles.
The extant literature supports the hypothesis that there exist
multiple profiles that promote math and science-related
choices and other profiles that do not promote those choices.
Profile analysis has the potential to reveal how expectancy-
value constructs function together in individuals.

Research Questions

1. What distinct profiles emerge from measures of math-
specific expectancies and values: math self-efficacy
(MSE), math attainment value (MAV), math utility
value (MUV), and math interest–enjoyment (MIV)?

2. What distinct profiles emerge from measures of
science-specific expectancies and values: science self-
efficacy (SSE), science attainment values (SAV),
science utility value (SUV), and science interest–
enjoyment value (SIV)?

3. How does profile membership relate to high-ability
status? It is hypothesized that expectancy value pro-
files will not be strongly related to high-ability status.
This prediction is based on the work of Gottfried and



226 L. ANDERSEN AND T. L. CROSS

Gottfried (2004), who found that only a small per-
centage of students were in both the high-ability and
high-motivation groups.

METHOD

Subjects and Sample Selection

The High School Longitudinal Study (HSLS) of 2009 (Ingels
et al., 2011) is a longitudinal study from the National Center
for Education Statistics (NCES) that tracks a nationally rep-
resentative sample of secondary students. The data come
from the base year. The sample design is a stratified, two-
stage random sample design with primary sampling units
defined as schools selected at the first stage and students ran-
domly selected from schools at the second stage. The sample
is representative of ninth-grade students in public and private
schools in the United States in 2009. Schools in 10 states
were selected; 944 schools participated. Within each school,
a stratified random sample of students was selected based on
race/ethnicity. An average of 27 students per school were
selected and the total number of students who participated in
the study was 21,444 (Ingels et al., 2011).

Instrumentation

The design of HSLS: 2009 differs from previous studies
because it was designed to examine “the paths into and
out of science, technology, engineering, and mathematics;
and the educational and social experiences that affect these
shifts” (Ingels et al., 2011, p. iii). By NCES design, the
questionnaire items support the important constructs of EV
theory (Ingels et al., 2011). Scale reliability analyses were
conducted for each scale (Table 1).

Variables

The scales that were used in this study had been created
by NCES (see Ingels et al., 2011). Descriptive statistics and
Cronbach’s alphas for each scale are summarized in Table 1.

TABLE 1
Descriptive Statistics (N = 19,259)

Variable Mean (SE) SD Alpha

Math achievement test score 38.956 (0.187) 11.920 N/A
Math self-efficacy (MSE) 0.0016 (0.0167) 0.997 .90
Math attainment value (MAV) 0.0010 (0.0157) 0.999 .84
Math utility value (MUV) 0.0020 (0.0166) 0.997 .78
Math interest–enjoyment value (MIV) 0.0055 (0.0168) 0.996 .75
Science self-efficacy (SSE) −0.0057 (0.0174) 0.994 .88
Science attainment value (SAV) −0.0061 (0.0156) 0.996 .83
Science utility value (SUV) 0.0019 (0.0174) 0.995 .75
Science interest–enjoyment value (SIV) 0.0060 (0.0175) 0.990 .73

Note. All measures except for the Math Achievement Test Score are
z-scores. The Math Achievement Test Score had a maximum of 70.

Expectancies

Self-efficacy scales for science and math were created by
NCES. Expectancies were operationalized as self-efficacies
or the confidence that the student has in her or his ability to
be successful at specific math or science tasks (Ingels et al.,
2011).

Subjective Task Values

Subjective task values represent the degree that the stu-
dent valued math or science. Separate scales for three of the
STV constructs (attainment, utility, and interest–enjoyment
values), for each of the two domains (math and science),
were created by NCES.

Math/science attainment values (MAV/SAV). Math
or science attainment value describes how well the domain
of math or science fit with the student’s identity. Two sets of
z-scores were created by NCES derived from factor analysis
of two items for each scale (Ingels et al., 2011).

Math/science utility values (MUV/SUV). Math or
science utility value describes how much the student thinks
math or science will be useful in life, for college, or for a
future career. Two sets of z-scores were created by NCES
derived from factor analysis of three items for each scale
(Ingels et al., 2011).

Math/science interest–enjoyment values (MIV/SIV).
Math or science interest–enjoyment value describes how
much the student is interested in or enjoys the respective
subject. Two sets of z-scores were created by NCES derived
from factor analysis of six items for each scale (Ingels et al.,
2011).

High Ability

In alignment with recommendations for the identifi-
cation of underrepresented groups (e.g., Lohman, 2005),
within-group norms were used to identify students who
scored at least one standard deviation above the mean within
their racial group (Asian, Black, Hispanic, or White) on
the math achievement score were identified as having high
ability (Table 2). The math achievement test score is an
acceptable proxy for above-average ability (J. Renzulli,
University of Connecticut, personal communication,
November 2, 2012).

In each analysis, the complexity of the sample was taken
into account and standard errors were adjusted for the clus-
tering of students within schools using the complex sample
features in MPlus 7 (Muthén & Muthén, 2012).
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TABLE 2
Math Achievement Test +1Z Cutoff Scores

Race Cutoff Score Valid N

Asian 61.375839 1,672
Black 46.430236 2,218
Hispanic 48.695370 3,515
White 53.198261 11,854

RESULTS

Data cleaning was performed using SPSS 20. The restricted-
use data set contained 25,206 cases. The following cases
were omitted from further analyses: 3,214 that were
weighted to zero by NCES because of missing data, 2,199 in
the “Other” race/ethnicity category, and 534 cases missing
the mathematics achievement score. This left 19,259 cases.

Results for Research Question #1

In accordance with the latent class analysis procedures rec-
ommended by Pastor, Barron, Miller, and Davis (2007), a
one-class model was estimated, then models with additional
classes were estimated until (a) the model would not con-
verge; (b) the Lo-Mendel-Rubin p-value exceeded .05; or (c)
the log-likelihood would not replicate. The initial number of
starts used in Mplus was increased to attempt to reach con-
vergence or log-likelihood replication. If the model did not
converge after the starts were changed to 4,000, “did not con-
verge” was recorded as the result. Models were structured
such that profile indicator variances were allowed to vary
within and between classes and covariances were constrained
to zero.

The models were compared using procedures recom-
mended by Pastor et al. (2007). To determine which model
best represented the latent class structure for the mathemat-
ics classes, the values of the Bayesian information criterion
(BIC) were examined (Table 3). The five-class model had
the lowest BIC value (Figure 1). However, the five-class

TABLE 3
Math Models

Classes LL
No. Free

Parameters BIC Entropy
Smallest

Class Freq.

1 −97,711 8 195,501
2 −90,981 17 182,129 0.658 9,508 (0.50)
3 −87,190 26 174,637 0.751 4,186 (0.22)
4 −85,769 35 171,883 0.753 2,126 (0.11)
5 −84,220 43 168,865 0.708 2,325 (0.12)
6 Did not converge
7 Did not converge

Note. LL = Log Likelihood.

FIGURE 1 Plot of BIC vs. number of math classes.

FIGURE 2 Mathematics four-class model profiles.

model split the typical class into two classes that were not
theoretically distinguishable from the typical class in the
four-class model; thus, the four-class model was selected.
The elbow in the plot of BIC versus number of classes
occurred at 3, indicating less improvement in model fit
when additional classes were added. However, a unique pro-
file (high math self-efficacy profile) was revealed in the
four-class model (Figure 2) that was not visible in the
three-class model, which justified retention of the four-class
model (Pastor et al., 2007). The four classes were labeled
as low, typical, high MSE, and high MUV based on the
characteristics that typified each.

Results for Research Question #2

The same model testing procedure was used for the science
classes (Table 4). The four-class model had the lowest value
of BIC. The graph of BIC vs. number of classes reached a
minimum at four classes (Figure 3). A unique profile (high
science self-efficacy profile) was revealed in the four-class
model (Figure 4) that was not visible in the three-class
model. The four classes were labeled as low, typical, high
SSE, and high SUV based on the characteristics that typified
each.
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TABLE 4
Science Models

Classes LL
No. Free

Parameters BIC Entropy
Smallest

Class Freq.

1 −91,171 8 182,421
2 −85,715 17 171,597 0.585 8,988 (0.47)
3 −83,059 26 166,169 0.627 3,382 (0.18)
4 −82,189 35 164,723 0.704 1,470 (0.08)
5 Did not converge
6 Did not converge
7 Did not converge

Note. LL = Log Likelihood.

FIGURE 3 Plot of BIC vs. number of science classes.

Results for Research Question #3

To examine the relationship between latent class member-
ship and high ability status the AUXILIARY (e) function
in Mplus 7 was used. Because high-ability students were
identified using a +1Z cutoff within racial group, 15.9%
of the population was identified. High-ability students
were significantly underrepresented in the low math class
and significantly overrepresented in the high math self-
efficacy (HMSE; 31%) and high math utility value (HMUV;
22%) classes (Table 5). Representation in the typical math
class (15%) was very close to the representation in the
population.

FIGURE 4 Science four-class model profiles.

SUMMARY OF MATH EXPECTANCY-VALUE
CLASSES

Math Classes

● Typical. All profile indicators were near the mean
(Figure 2). Forty-four percent of high-ability students
were members of this class.

● Low. All profile indicators were below the mean
(Figure 2). Fifteen percent of high-ability students were
members of this class.

● HMSE. In this class, MSE was high and the other pro-
file indicators were above the mean, except for math
utility value, which was average (Figure 2). High-
ability students were represented in this group at nearly
twice the rate as in the population. These students
had the strongest sense of MSE, fitting the stereotype
of the gifted math student. However, these students
had relatively low MUV and MIV. Twenty-three per-
cent of high-ability students were members of this
class.

● HMUV. In this class, all indicators were high, but
MSE was lower than the value for the high MSE class
(Figure 2). These students had the strongest percep-
tion of the usefulness of math for their future careers
and college success and the highest level of interest
in math. Eighteen percent of high-ability students were
members of this class.

TABLE 5
Summary of Science Classes

Class (% of Sample) SSE M (SE) SAV M (SE) SUV M (SE) SIV M (SE)
High-Ability Students

(% of Class)

Low (40%) −0.763 (0.060) −0.684 (0.041) −0.600 (0.050) −0.765 (0.057) 10.3
Typical (43%) 0.075 (0.022) 0.202 (0.031) 0.105 (0.023) 0.235 (0.027) 15.4
High SSE (8%) 1.501 (0.045) 0.838 (0.109) 0.315 (0.062) 0.667 (0.077) 27.8
High SUV (9%) 0.954 (0.056) 0.955 (0.112) 1.508 (0.020) 1.243 (0.054) 21.8
Entire sample (100%) 0.002 (0.017) 0.001 (0.016) 0.002 (0.017) 0.006 (0.017) 15.9

Note. All scale scores are z-scores.
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SUMMARY OF SCIENCE
EXPECTANCY-VALUE CLASSES

Science Classes

● Low. All of the profile indicators were below the
mean (Figure 4). Twenty-eight percent of high-ability
students were members of this class.

● Typical. All of the profile indicators were near the
mean. Forty-five percent of high-ability students were
members of this class.

● HSSE. In this class, SSE was high and the other pro-
file indicators were above average but below the values
for the HMUV class. Fourteen percent of high-ability
students were members of this class.

● HSUV. In this class, SUV and SIV were high and the
other profile indicators were above the mean. These
students had the strongest perception of the usefulness
of science to their future careers and college successes
and the highest levels of interest in science. However,
attainment value was not distinguishable from the level
in the HSSE class and self-efficacy was below the level
in the HSSE class. Thirteen percent of high-ability
students were members of this class.

DISCUSSION, CONCLUSIONS, IMPLICATIONS

Limitations and Delimitations

First, a limitation was the lack of a standardized measure of
science achievement. The math achievement test score was
a proxy for high ability in science. The nature of the EV
questionnaire items was a limitation because the questions
were asked specifically about the Fall 2009 math and sci-
ences courses in which the students were enrolled. Students’
expectancies and values about a specific math or science
course may be different from their expectancies and val-
ues about the domains of math and science in general.
Furthermore, expectancies and values for technology and
engineering were not addressed in the HSLS, 2009 ques-
tionnaire. In this study, high-ability was defined as a score
greater than or equal to +1Z within a race group on the math
achievement test. This definition may differ from other def-
initions because it is used within group norms instead of
global norms. The bulk of studies on gifted students have
used identification standards that are more stringent than this
standard.

EXTANT MATH AND SCIENCE
EXPECTANCY-VALUE PROFILES

The main objective was to identify math and science moti-
vation profiles. An exploratory modeling process revealed
patterns in the latent profile indicators within the popula-
tion of U.S. ninth-grade students in 2009. Separate models

were established for math expectancy-value and for science-
expectancy value.

The classes supported the hypothesis that a number of
subgroups would be identified with high, low, and mixed lev-
els of expectancy-value. High, low, and mixed classes were
identified for math and for science. Based on Conley (2012),
who found seven distinct clusters in her analysis of math
expectancies and values, it was expected that the latent class
models would have had several classes. However, Conley
used cluster analysis and different model selection criteria.
Therefore, direct comparisons between Conley (2012) and
the latent profile solutions in the current study may not be
relevant.

Comparison of Math and Science Profiles

The models revealed information about students’ compar-
ative self-efficacies and subjective task values in math and
science. Both the math and science models had four classes
(see Figures 2 and 4). Both models show high self-efficacy
classes, which depict groups who had relatively high self-
efficacies but much lower utility values than the high utility
value classes. Another similarity between the models was
that both the math and science models had a high utility value
class. These classes described students who had relatively
high utility and interest values combined with relatively
lower self-efficacies.

Class Size and Membership

The sizes of the classes in each model (Tables 5 and 6)
revealed that fewer students were in the high science classes
(17%) than in the high math classes (33%). This trend was
also observed for high-ability students; 41% of high-ability
students were in the high math classes and 27% were in the
high science classes. A possible cause may be that students
have had a greater number of and more frequent experiences
with math than with science prior to high school because
of U.S. testing mandates that place much greater empha-
sis on math than science in the K–8 curriculum (Berliner,
2009, 2011; McMurrer, 2008). Thus, students may not have
developed a strong sense of what science is or of their abil-
ities in science by the ninth grade. If the current trend of
increased emphasis on STEM education continues, more dif-
ferentiation of students’ science expectancy-value profiles
may result.

Representation of High-Ability Students

In this study, high ability was operationalized as students
who scored +1Z on the math achievement test within the
respective race/ethnicity group. This is a much broader
conception of giftedness than is generally seen in prac-
tice because typical threshold scores are closer to 95% for
selection, and it reflects a strategic effort to identify equal
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TABLE 6
Summary of Math Classes

Class (% of Sample) MSE M (SE) MAV M (SE) MUV M (SE) MIV M (SE)
High-Ability Students

(% of Class)

Low (33%) −0.890 (0.051) −0.864 (0.030) −0.497 (0.032) −0.836 (0.036) 7.0
Typical (44%) −0.003 (0.010) 0.182 (0.029) 0.023 (0.038) 0.178 (0.022) 15.1
High MSE (11%) 1.360 (0.021) 0.719 (0.098) 0.086 (0.039) 0.498 (0.067) 30.8
High MUV (12%) 0.984 (0.093) 1.045 (0.138) 1.197 (0.021) 1.179 (0.098) 22.2
Entire sample (100%) 0.002 (0.017) 0.001 (0.016) 0.002 (0.017) 0.006 (0.017) 15.9

Note. All scale scores are z-scores.

TABLE 7
Bivariate Correlations

1 2 3 4 5 6 7 8 9

MSE 1
MAV 0.572∗ 1
MUV 0.360∗ 0.290∗ 1
MIV 0.540∗ 0.547∗ 0.423∗ 1
SSE 0.401∗ 0.267∗ 0.190∗ 0.180∗ 1
SAV 0.188∗ 0.274∗ 0.103∗ 0.114∗ 0.493∗ 1
SUV 0.201∗ 0.190∗ 0.426∗ 0.224∗ 0.414∗ 0.387∗ 1
SIV 0.141∗ 0.136∗ 0.180∗ 0.194∗ 0.508∗ 0.462∗ 0.492∗ 1
X1TXMSCR 0.306∗ 0.384∗ 0.000 0.213∗ 0.225∗ 0.248∗ 0.057∗ 0.123∗ 1

∗p < .01.

proportions of gifted students in every race/ethnicity group
through the use of group-specific thresholds. The represen-
tation of high-ability students varied considerably between
the math classes and the science classes. Though the high
MSE class had nearly twice the level of high-ability students
(30.8%) as in the population, high-ability students were rep-
resented in the high MUV class at a rate larger than in the
population (22.2%). However, there was a positive relation-
ship between math ability and MSE (Table 7; r = 0.306,
p < .01), as would be expected. Similarly, high-ability stu-
dents were represented in the high SSE class at a rate of
27.8% and at a rate of 21.8% in the high SUV class. Equal
proportions of high-ability students were in the high SUV
group and the high MUV group. The more inclusive opera-
tionalization of high ability means that many students who
were included in the high-ability group have not been for-
mally identified as having high ability by their schools. The
lack of formal identification may cause these students to
have lower self-efficacy and attainment value in the domain
because they have not received the affirmation of their teach-
ers. These lower expectancies and values would result in a
lower expectancy-value class membership than the students’
abilities might warrant.

Subjective Task Value Components

A person-centered approach was taken that considered the
relationship of profiles of the STV variables that naturally
occurred with correlates, rather than the mean levels of the

variables. Both approaches are different methods of looking
at the same data and each is useful. Previous research has
shown that the STV variables are highly correlated and has
combined the multiple constructs into a composite variable
(e.g., Eccles et al., 1984; Simpkins & Davis-Kean, 2005;
Watt et al., 2006). In this study, the variables were some-
what related but did not always occur at the same levels.
In the math and science profiles, the low and typical profiles
each contained low or average values of the profile indica-
tors (see Figures 2 and 4). However, the two high profiles
were mixed. In the high utility-value classes, the value of
utility value was higher than in the high self-efficacy classes.
However, interest and attainment values were higher in the
high utility-value classes than the high self-efficacy classes.
The differences between these classes justify the use of a
person-centered approach because these differences would
not be observed if the STV variables were combined into a
composite.

This study addressed problems in the literature with exter-
nal validity because a large, nationally representative sample
was used. Previous studies lacked sufficient representation
of minority students. The only previous study that separated
STV components was Conley (2012). However, her sample
consisted of predominantly Vietnamese and Latino children
of working-class parents. Conley (2012) found that math
utility value was uniformly high across the seven-cluster
solution. In this sample that had proportional representa-
tion to the U.S. population of ninth-grade students in 2009,
classes with high and low utility value were identified.
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An explanation for this may be that the subpopulations in
which high utility value might be found were relatively small
portions of this sample.

Motivation Profiles and Gifted Potential

The classification of students into motivation profiles has
potential to facilitate the identification of high-ability stu-
dents who may exhibit gifted behavior, in accordance with
the TRCG (Renzulli, 1978). In this study, a +1Z cutoff was
used to define the high-ability group and latent profile analy-
sis was used to identify the high motivation groups. Through
this process, students who possessed the first two qualities,
above-average ability and task commitment or motivation,
were identified.

The findings of this study show that the majority of
high-ability students were not part of the high motivation
groups. In the math profiles, the students in the high self-
efficacy class would be identified as highly motivated. This
class represents 23% of the high-ability students. If the high
utility class is included in the highly motivated group, the
percentage of the population that would be identified as
mathematically gifted increases to 41% of the high-ability
students. In the science profiles, the high self-efficacy class
represents 14% and the high utility class represents 13%
of the high-ability students, which sum to 27%. These two
groups (mathematically and scientifically gifted) have some
overlap in membership. The finding that a minority of high-
ability students also exhibited high motivation is supported
by previous research (e.g., Gottfried et al., 2009; Gottfried
& Gottfried, 2004). Importantly, this finding has serious
implications for talent development in the science and math
disciplines. Students who have lower motivation are less
likely to choose and persist in the study of these subjects.
Possible reasons for the lower motivation of high-ability
students may be that academic coursework in math and sci-
ence are not perceived as useful for future careers or college
course-taking because these students do not consider careers
in STEM disciplines as viable options for their futures.
Further, low values of interest–enjoyment value indicate that
these students generally do not find school math or science
interesting or enjoyable. This lack of interest and enjoyment
negatively affects potential interest in STEM occupations
and future coursework.

This approach demonstrates a way to cast a wider net for
identification of students who are potentially gifted because
lower threshold scores and within group norms were used to
identify high-ability students and motivation was considered.
Thus, attempts to identify the concomitance of high ability
and high motivation could be useful to select those students
who would benefit most from gifted education services.

Motivation Profiles and Underachievement

Expectancy-value profiles could be used to identify high-
ability but undermotivated students who are likely to be

underachieving academically. Contemporary methods used
in schools generally compare expected school achievement,
as indicated by achievement or IQ tests, to actual school
achievement; underachievement is indicated by a large dis-
parity between the two. However, by broadening the field of
view to include above-average students and measuring moti-
vation, a larger number of underachieving, undermotivated,
high-ability students could be identified. An examination of
the rate at which high-ability students populated the low-
est motivation profiles in this study exemplifies this point.
The low math class represented 15% of high-ability students.
The low science class represents 28% of high-ability stu-
dents. The size of the low-motivation, high-ability group was
larger than the high-motivation, high-ability group in sci-
ence. The high occurrence of high-ability students in low
motivation profiles should be investigated further, because
this condition is likely to result in underachievement and
hamper the development of potential. This group may be less
likely to develop domain-specific talents than the group of
high-ability students who exhibit high motivation. Perhaps
talent development outcomes of gifted education could be
improved if motivation was considered and ability threshold
scores were lowered.

Some evidence was found of disidentification. In gen-
eral, students with higher self-efficacies had above-average
subjective task values (attainment, utility, and interest val-
ues). However, students in the high self-efficacy groups had
lower attainment, utility, and interest values than the students
in the high utility value groups. Furthermore, substantial
numbers of high-ability students were found in the low moti-
vation classes, which means that many high-ability students
exhibited low self-efficacy in math and/or science. This con-
tradicts the findings of Dai, Moon, and Feldhusen (1998)
that claimed invariant findings of higher self-efficacy among
gifted students.

FUTURE RESEARCH

It remains to be analyzed how the classes were populated in
detail. Extant literature on the differences between minor-
ity and modal gifted children has raised many questions
that could be answered with further analysis of these data.
In particular, these data could also be used to answer ques-
tions about the potential stigma of STEM and how it is
perceived by students of different race/ethnicity, gender,
and SES.
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