Tag Archives: Anchoring Phenomenon

Systems Models

Photo by Andrea Piacquadio on Pexels.com

Our garbage journey continues! On August 27 students made individual predictions about what will happen to the properties of the four rubbish materials (apple, banana, plastic, foil) over time. They also predicted what will happen to the weight of their landfill bottle over time. Half of the students had created a closed system and the other half had created an open systems.

I introduced the idea of system models, which they had used earlier. Scientists make system models to show the important components of the system and how those components interact. Students were asked to create a model that would include the system components and tell the story of what is going on in the bottles at each time point. Today we create the model for time point 1. The model for time point 1 includes a group prediction of what will happen to the rubbish materials.

On August 30 students examined one of the group’s models to notice its features. Models are thinking tools that scientists use to describe, explain, and predict. We will use our models to keep track of how the system changes. Later, we will use the models to support our explanations of the phenomenon.

Developing and using models is one of the science and engineering practices. We discussed how we are using these practices because we are scientists. Then we reviewed the list of 8 science and engineering practices:

  • Asking questions and defining problems
  • Developing and using models
  • Planning and carrying out investigations
  • Analyzing and interpreting data
  • Using mathematics and computational thinking
  • Constructing explanations and designing solutions
  • Engaging in argument from evidence
  • Obtaining, evaluating, and communicating information

We noticed which of these we have already used in science class. We have already used at least 3 of these!

We went back to our questions to pick another thing to investigate.

Our big question is How does the rubbish system work? One component of the rubbish system is a rubbish truck. What happens in a rubbish truck?

We watched this video clip about what happens in a garbage truck. The rubbish truck crushes materials. I asked What happens to materials when they are crushed? Does the kind of material change? Does the weight change? How could we investigate this in our classroom?

Students suggested we could weigh things before and after crushing them to see what happens to weight. Then we brainstormed ideas of what we could crush. Students contributed ideas and then we narrowed the list down to items that were things easy to get and safe. We decided on cardboard, paper, wood sticks, soda can, and aluminum foil.

The last activity for the day was an exit slip that asked students about the landfill bottle investigation. Students were asked to describe the system they were investigating, its components, the data they were collecting, and what questions the investigation will help answer. I collected these formative assessments.

Upon reviewing these assessments, I found that many students did not use the concepts of systems and components correctly yet. I plan to add an additional activity to reinforce this idea before we use systems again in class.

Model Landfill Bottles

Image from https://www.nsta.org/science-and-children/science-and-children-septemberoctober-2020/making-everyday-phenomena.

On August 26 we started the major investigation of the unit. To answer the question of what happens to our garbage, students made six model landfill bottles. Students had collaboratively decided the components to include in the bottles the day before this activity. They included banana, apple, aluminum foil, and a plastic spoon in their bottles, along with soil and water. The spoons were identified as compostable spoons, which were the ones that come with the school lunches. Students will observe the bottles for a few weeks to look for changes in the properties of the materials over time.

I asked the students to predict what will happen to the materials in the bottles. Students said the materials would break down and turn into compost. I asked if they thought that would happen if the bottle were closed or open. Many students thought that the materials in the closed bottle would not break down. This gave a reason to compare open and closed systems. We left 3 bottles open to the air, but we did put a screen over the top of the bottle to prevent geckos from getting in the bottles. We closed the other three bottles. Now we have an open system and a closed system to compare. Systems and system models is a focal crosscutting concept for this lesson.

We have to wait to see what will happen. Next class we will create our group models for these systems.

Creating the Driving Question Board

On Monday we began to build our driving question board. First we reviewed rubbish systems by building system models and comparing them. Students cut out images and arranged them into a system model for a rubbish system in the school or community. They compared the model to the home rubbish system model we had constructed the previous class. Here is one example of a system model for the rubbish system. We identified similarities and differences among the rubbish systems.

Next, Students took out the sticky notes that they had written their questions on. I asked them to individually decide which questions we could answer in science class. Then they talked with their groups to decide which questions we should answer in class. Each group put their sticky notes on a piece of chart paper at the end of class.

After class, I examined the questions and created the logical categories that are shown in the Google Jamboard.

Questions in logical categories

I thought about how these questions could lead into the investigations that I had already planned for this unit. Because the rubbish system is very different here than where the curriculum was developed, students had questions that are not addressed in the curriculum. For example, students had many questions about H-Power and generating electricity. I will add content to the unit to address theses questions.

The trash materials category (in blue) is the most closely connected to properties of materials. I will use this category to transition to the next lesson where we will look at changes in properties of materials in a landfill or compost. The question “Can all trash be made into electricity?” is an opportunity to talk about which materials go to H-Power and which do not go to H-Power. Once we have identified the materials that do not go to H-Power (commercial food waste, yard trimmings, metal, cardboard, etc) we can talk about why. The why is because of the properties of those materials.

A Virtual Tour of the ‘Ōpala System

Today is the second day of Lesson 1-1 in the adapted Garbage Unit. Last class, students sorted the lunch rubbish and created categories. The categories this class created were food, paper, plastic, and cardboard. They observed the patterns of properties of materials in the rubbish. Today students made predictions about how those materials will change over time. We shared our predictions with each other.

To check some of our predictions and see where our trash goes, we took a virtual field trip. The ‘ōpala system is different than the garbage system in other places, so we adapted the unit by including videos that are locally relevant. For example, after sorting at homes or businesses, rubbish goes to the H-Power waste-to-energy plant rather than to a landfill. We gave students sticky notes to write down the questions they have. We told students that we would be using these questions to plan our investigations.

First, we showed a video clip from a science show for kids about waste-to-energy plants. (We started this video at 0:22 and ended at 1:57 to focus on content appropriate for elementary students.) We told the students that even though this video was made in Massachusetts, we have the same kind of waste-to-energy plant in Hawai‘i in Kapolei.

Next we showed the video clip that comes with The Garbage Unit about landfills (This video clip is 2 min 19 sec.) On O‘ahu, the ash from the burned rubbish goes to a landfill rather than trash going directly to the landfill. We do not explain this to the students yet, that will come in the next lesson when we create the system model.

We showed a third video clip from the local news about H-Power, which is the trash-to-energy plant in Kapolei. This clip features students explaining what H-Power is and how it benefits O‘ahu. We started the clip at 0:25 and ended at 2:32.

For homework, students were asked to notice things that go in the rubbish at home, draw and label these things, and place them in the appropriate category (food, plastic, paper, cardboard). For each category, students were asked to list some properties of things in that category. Lastly, students were asked to talk to their families about how they get rid of their rubbish. We will use this information to build a model of the ‘Ōpala system next class.

Rubbish Sort

Tuesday was the first day of the ‘Ōpala unit. ‘Ōpala is the Hawaiian word for garbage and the unit is adapted from the NYU SAIL Garbage Unit, which is an Open Educational Resource. The Garbage Unit was awarded the NGSS Design Badge.

Locally, we use the word rubbish rather than the word garbage. The unit is place-based as we are studying our local ‘ōpala system. The unit is problem-based as students will be figuring out what happens to their rubbish and why it happens. In this phase of the unit, students have opportunities to experience the anchoring phenomenon. We engage students with the phenomenon of rubbish and we elicit their initial ideas. Students will later create a driving question board. During the unit the class will answer their questions through investigations.

Tuesday was the first day of our unit. Lesson 1-1 takes 4 days. The first activity was for students to sort items from the lunch rubbish into categories. I asked each group of students to observe a small pile of rubbish. I asked them how and why scientists make observations. They knew that scientists looked at things carefully to figure out how and why things happen. The students were tasked with sorting their rubbish pile into smaller categories.

Rubbish sorted into food and not food categories

Two kinds of sorting emerged. A few groups of students sorted their rubbish into two categories—food and non food. The rest of the groups sorted their rubbish into three categories—paper, plastic, and cardboard.

We talked about how scientists use patterns of properties to identify materials. The students wrote down the sorting categories and the properties of things in those categories in their science notebooks.

Tomorrow we will predict what happens to those categories of things over time in the rubbish and take a virtual tour of the ‘Ōpala system.

Planning Science Units with Equity in Mind

This post gets deeper into Chapter 2 of Ambitious Science Teaching. This chapter explains a systematic unit design process used to create a series of lessons that can build understanding coherently. What struck me the first time I read this chapter is how well this planning process supported creating units that embody the vision of science teaching and learning in the Next Generation Science Standards. This design process is also useful for creating problem-based learning units. This post describes the three practices in this process, how the process builds in some equity considerations, and how the process might be extended to address other equity issues.

The process consists of three major practices:

  • Practice 1: Identifying big ideas
  • Practice 2: Selecting an anchoring event and essential question
  • Practice 3: Sequencing learning activities that build specific understandings

Descriptions of each of the three practices are supported by detailed examples from work with teachers.

Practice 1 includes a whiteboard activity to help curriculum writers select the most important ideas that have the most explanatory power. Considering a tentative anchoring event can help guide this process. These important ideas become the conceptual threads that ties the unit together.

Practice 2 focuses on choosing the anchoring event. Curriculum writers should consider features that make the anchor context-rich and more compelling for their students, such as historical significance or issues of social justice that can motivate interest. See Angela Calabrese-Barton‘s Twitter feed for examples of how to incorporate social justice, such as this one about the water in Flint, Michigan. Students will model and explain the causes of an anchoring event over the course of instruction, and these explanations should integrate multiple science ideas. The anchoring event should be complex enough to provide space for students to create different kinds of explanations.

Practice 3 is a strategy for identifying and sequencing learning activities in a unit. A key part of this planning is a teacher-developed gapless explanation for the anchor event, which should be written just beyond the expectation for students at grade level. Learning activities are identified and sequenced to support development of the gapless explanation.

Although the planning process seems straightforward, there are a few other things we might consider in planning for equity. Equity is a key concept in AST (see my post on Chapter 1). The authors made strong connections between the anchoring event and equity, but they did not make connections between the gapless explanation and equity.

Who decides on the content of the gapless explanation?

Philip Bell raised an interesting question on Twitter about gapless explanations. From whose perspective are they gapless? It is important to consider explanations from multiple perspectives and not focus only the Euro-western perspective. How can different ways of knowing be recognized and developed in science teaching? There is much work to do in this area that has the potential to increase equity. We need to acknowledge and build upon the funds of knowledge that all students bring to school science. We need to expand our views of science as a way of knowing to be more inclusive of all cultures. There is a lot of work that remains to be done in this area.

I appreciate reading the posts from my science education colleagues on Twitter that help deepen my understanding. I look forward to working with members of the #ASTBookChat group as we explore AST together.

What are your thoughts about the AST unit design process? What other ways could the unit planning process be more attentive to equity? Share in the comments!

Planning for engagement with big science ideas

This is week two of a book study of Ambitious Science Teaching (Windshitl, Thompson, & Braaten, 2018) with a nationwide group of science educators. The study was organized by @sbottasullivan. We are working through one chapter of the book each week and I will blog about each chapter. This post is about Chapter 2, Planning for engagement with big science ideas. You can follow our book study using #ASTBookChat on Twitter.

This chapter describes a unit planning process. This unit planning process is very different than the methods in which most science teachers have been trained. The rationale for this process is compelling. A anchor-driven unit has advantages over traditional topic-driven units.

Manuel Keusch

Selecting a good anchor takes time and thought, but is essential to creating a high-quality unit. The anchor must be complex enough that multiple science ideas are needed to explain it. The anchor must also be relevant to studentsʻ  lived experiences. In this way, the choice of anchor contributes to equity and rigor, which were two of the major concepts in my Chapter 1 post.

Eneida Nieves

As we design a unit, we should identify the big ideas that have explanatory power. Which ideas shed light on the inner workings of the most phenomena? The observation that often the most important big idea in a unit is not even explicitly called out in a typical unit was striking. It is important for us to equip students with the ability to use ideas with great explanatory power that can be used in multiple contexts.

fotografierende

Modeling and explanation of the anchor event are key activities in a high-quality unit. Students engage in iterative cycles of evidence gathering and sense-making as they develop their explanations. Models make their thinking visible. Our teaching goals must include explanations that include the “why” of anchor events. Teachers develop the gapless model that is the explanation of the anchor activity before they design the unit.

Anchor events are the thread that holds together the activities in the unit. The activities help students answer questions about the anchor event and are arranged in a logical order. This chapter describes a process for deciding how to order unit activities.

I am looking forward to the weekly discussion from the #ASTBookChat group on Twitter and synchronously via Zoom each week.

For more about #ASTBookChat, see my previous posts: